On the Equivalence of Automaton-based
Representations of Time Granularities

Ugo Dal Lago?!, Angelo Montanari?, and Gabriele Puppis?

I Department of Computer Science
University of Bologna, Italy
dallago@cs.unibo.it

2 Department of Mathematics and Computer Science
University of Udine, Italy
{angelo.montanari, gabriele.puppis}@dimi.uniud.it

Motivations

o relational databases:
to express temporal information at different time granularities,
to relate different granules and convert associated data
(queries)

o artificial intelligence:
to reason about temporal relationships, e.g, to check
consistency, validity, and equivalence of temporal constraints
at different time granularities (temporal CSPs)

e data mining:
to discover temporal relationships between collected events, to
derive implicit information from such relationships.

Outline
@ Introduction (time granularities and their representations)

@ The automaton-based approach (Single-string automata)

@ The equivalence problem

@ The solution for RLA-based representations

Introduction
°

Time granularities

Let (N, <) be the underlying temporal domain.
Definition
A time granularity G is a partition of a subset of (N, <) such

that, for every pair of distinct sets g, g’ € G (called granules),
one of the following two conditions holds:

Q@ g<g' (ie, foralltegandforall t' € g t<t),
Q@ g >g' (ie, forallt e gandforall t' € g, t>1t).

Examples
I 2=13 2 1 I I O
123456 7 8 91011121314151617181920212223242526
Week ---| | | |
1 2 3 4
BusinessWeek - -| [[[
1 2 3 4

BusinessMonth - .. _ . .

Introduction
.

Representation formalisms

We cannot finitely represent all granularities over an infinite domain
= we have to restrict ourselves to a proper subclass of structures.

Possible approaches to time granularity representation

@ algebraic one:
relationships between granularities are represented

by algebraic terms built up from a finite set of operators
(e.g., Week = Group;(Day) in the Calendar Algebra)

® Bettini, S. Jajodia, S.X. Wang. Time Granularities in
Databases, Data Mining, and Temporal Reasoning. 2000.
o logical one:

time granularities are defined by models of
formulas in a suitable language (e.g., PLTL)

> C. Combi, M. Franceschet, A. Peron. Representing and
Reasoning about Temporal Granularities. Journal of Logic
and Computation, 2004.

Introduction

Representation formalisms

We cannot finitely represent all granularities over an infinite domain
= we have to restrict ourselves to a proper subclass of structures.

Possible approaches to time granularity representation

o string-based one:
relationships between time points and granules are
encoded by sequences of symbols from a given alphabet
(e.g., Granspecs)

® Wijsen. A String-based Model for Infinite Granularities.
Proceedings of the AAAI Workshop on Spatial and Temporal
Granularities, 2000.

@ automaton-based one:

automata are used to encode string-based representations
of time granularities (e.g., Single-string Automata)

Q U. Dal Lago, A. Montanari. Calendars, Time Granularities, and
Automata. Proceedings of the 7th International Symposium on
Spatial and Temporal Databases, 2001.

Introduction
°

String-based approach

Basic ingredients of the string-based approach

o A fixed alphabet {l,J, 4}, where
B represents time points covered by some granule,
[0 represents gaps within and between granules,
<« represents the last time point of each granule

@ Restriction to ultimately periodic words over {ll,[], <},
namely, to finite granularities or granularities that, ultimately,
periodically group instants of the temporal domain.

Example
The infinite word HRERE<CJAEER <1 AEEE<...
represents the granularity BusinessWeek in terms of Day.

Such a string can be finitely presented by a Granspec,
namely, a pair prefix-pattern, such as (¢, HREE<C).

Automaton-based approach
°

Single-string Automata

Connection between ultimately periodic words and automata:

Proposition

Any ultimately periodic word is recognized by a Single-string
Automaton (SSA), namely, a Biichi automaton accepting a
single infinite word.

Corollary

Finite granularities and ultimately periodical granularities
can be represented by Single-string Automata.

An SSA representing BusinessWeek
O <
H- 0@
O
m
— (S S S
start —(S)——(D)——(2)—

Automaton-based approach
[I}

Extended Single-string Automata

Problem

Representations based on Granspecs and SSA are too large
with respect to inherently simple structure of granularities.

Possible solution

Use counters and multiple transitions to compactly encode
redundancies of time granularities:

@ counters range over discrete domains (e.g., N),
@ update operators modify the values of the counters,

@ guards rule the activation of primary transitions
and secondary transitions
(note: only one transition is enabled at each step).

Automaton-based approach
oce

Extended Single-string Automata

An Extended SSA representing Month

Jjmod 12 =0
i 0 — Ok — k41

// < \\
/ \
/ . . .

I f—0j—Jj+1 C | @

1

1 < 1

! |

! 1

I Y o (. | | S I<<<9

o o0

: 7 kmod4=0A "ﬂ\\H*ﬂ\\H‘
@ | o

I I k mod 400 ## 100 A RIS S i

| ok '3 338 ¢

| gl. k mod 400 # 200 A g 22 .E

'\ ofl k mod 400 # 300 [

1 1

@_J
©
©

i mod 26 = 0
—(So)F----- > S
fe=0ar \ i 0 —j+1
|

|

=0 —j+1
P

Automaton-based approach
°

Restricted Labeled Single-string Automata

New problem

Extended SSA do not ease algorithmic manipulation.

Solution (Restricted Labeled Single-string Automata - RLA)
One can introduce suitable restrictions:
@ states can be labeled (namely, they recognize a symbol)

Automaton-based approach
°

Restricted Labeled Single-string Automata

New problem

Extended SSA do not ease algorithmic manipulation.

Solution (Restricted Labeled Single-string Automata - RLA)
One can introduce suitable restrictions:

@ states can be labeled (namely, they recognize a symbol)
or non-labeled (in this case, they are assigned a counter),

Automaton-based approach
°

Restricted Labeled Single-string Automata

New problem

Extended SSA do not ease algorithmic manipulation.

Solution (Restricted Labeled Single-string Automata - RLA)
One can introduce suitable restrictions:

@ states can be labeled (namely, they recognize a symbol)
or non-labeled (in this case, they are assigned a counter),

@ the graph of primary transitions is acyclic (forest graph),

Automaton-based approach
°

Restricted Labeled Single-string Automata

New problem
Extended SSA do not ease algorithmic manipulation.

Solution (Restricted Labeled Single-string Automata - RLA)
One can introduce suitable restrictions:

@ states can be labeled (namely, they recognize a symbol)
or non-labeled (in this case, they are assigned a counter),

@ the graph of primary transitions is acyclic (forest graph),

@ secondary transitions depart from non-labeled states
and form back edges in the forest graph,

Automaton-based approach
°

Restricted Labeled Single-string Automata

New problem

Extended SSA do not ease algorithmic manipulation.

Solution (Restricted Labeled Single-string Automata - RLA)
One can introduce suitable restrictions:

@ states can be labeled (namely, they recognize a symbol)
or non-labeled (in this case, they are assigned a counter),

@ the graph of primary transitions is acyclic (forest graph),

@ secondary transitions depart from non-labeled states
and form back edges in the forest graph,

@ uniform policy of counter update (decrement/reset).

The equivalence problem
.

Problem statement
Definition
The equivalence problem consists in deciding whether
two given representations define the same time granularity.

Examples

The two Granspecs (¢, HREE<C) and
(HE EE<JEEEE<]]) are equivalent.

Similarly, the two Restricted Labeled SSA are equivalent:

start *<1>, © <2> @

start—————— <

The equivalence problem
[1]

Proposed solutions

As for string-based specification

The equivalence problem reduces to the pattern matching problem

= the algorthm is linear in the size of the input Granspecs.

As for automaton-based representations

Trivial (but inefficient) solutions exist:

simply unfold the automata into equivalent Granspecs and
then use pattern matching algorithms to test equivalence

= exponential complexity for both Extended Single-String
Automata and Restricted Labeled Single-String Automata.

The equivalence problem
oe

Proposed solutions

As for Extended SSA
A better (but still rather inefficient) solution exists:

the equivalence problem is reduced to the satisfiability problem for
PLTL* (i.e., a temporalization of a fragment of Presburger logic)

= the problem turns out to be in PSPACE
(completeness proved by using a reduction from the
satisfiability problem for quantified boolean formulas).

® S Demri. LTL Over Integer Periodicity Constraints.
Proceedings of the 7th International Conference on
Foundations of Software Science and Computation
Structures, 2004.

In the following, we focus on a solution to the equivalence
problem for Restricted Labeled Single-String Automata ...

Solution of RLA equivalence
°0

Sharing automata

Definition
A chain is a path of primary transitions that goes

@ either from the target to the source of a secondary transition

Example

Consider the following automaton:

start \Q\/" © <2> @

Solution of RLA equivalence

°0
Sharing automata

Definition
A chain is a path of primary transitions that goes

© either from the target to the source of a secondary transition

Example

Consider the following automaton:

Solution of RLA equivalence
°0

Sharing automata

Definition
A chain is a path of primary transitions that goes

© either from the target to the source of a secondary transition

Example

Consider the following automaton:

Solution of RLA equivalence
°0

Sharing automata

Definition
A chain is a path of primary transitions that goes

© either from the target to the source of a secondary transition

Example

Consider the following automaton:

start \<4>I © <2> @

Solution of RLA equivalence

°0
Sharing automata

Definition
A chain is a path of primary transitions that goes

© either from the target to the source of a secondary transition
@ or from the entry point “start” to the deepest state.

Example

Consider the following automaton:

®
1@ G

Solution of RLA equivalence
°0

Sharing automata

Definition
A chain is a path of primary transitions that goes
@ either from the target to the source of a secondary transition

@ or from the entry point “start” to the deepest state.

An automaton is sharing if it contains some overlapping chains.

Example

Consider the following automaton:

&
s @S

...it is easily seen to be sharing.

Solution of RLA equivalence
oce

Sharing automata

Lemma

Any Restricted Labeled SSA can be transformed into
an equivalent non-sharing automaton with (at most)
a polynomial blowup of states.

Proof idea

Simply duplicate overlapping portions of chains:

Solution of RLA equivalence
0

Basic idea

Fact

Two Restricted Labeled SSA A and B are not equivalent
iff there exist two distinct symbols a, b such that

Occ 4(a) N Occp(b) # O

where Occ 4(a) denotes the (possibly infinite) set of
occurrence positions of a in the word recognized by A.

Proposition

If A is non-sharing, then the set Occ 4(a) can be presented
as a finite union of linear progressions of the form

p1C1+~--+pnCn

where p; € NT and C; is an interval of N
(the presentation uses only polynomial size
w.r.t. the size of the automaton).

Solution of RLA equivalence
oce

Basic idea

Example
Consider the non-sharing Restricted Labeled SSA A:

/
1 \
1 1
| % At I
/ I /

@

>—<
start—4—— (@ é}i/

\

A

Occy@ = 1 + 1 - 0,3
first loop counter
position length interval

U 8 + 1 - [03] + 7 - [0u]

first 1%t loop 1% counter pac loop 2" counter

position length interval length interval

Solution of RLA equivalence
°

Reduction to linear diophantine equations

Fact

Testing the intersection of two linear progressions
pCG+...+pnC, and gi1D1+ ...+ gmDm

is equivalent to the problem of testing the satisfiability
of the linear diophantine equation

pixi+ ...+ PnXn — G1¥1— .. — Gmym = 0
over the bounded variables min(C;) < x; < max((;),

min(D;) < y; < max(Dj).

Theorem

The non-equivalence problem for Restricted Labeled SSA is
reducible to the satisfiability problem for linear diophantine
equations with bounds on variables.

= The RLA equivalence problem is in Co-NP.

Conclusion

Open problem
Establish whether the non-equivalence problem for Restricted
Labeled Single-string Automata is Co-NP-complete or not.

(Note: it is conceivable that the problem may
enjoy a deterministic polynomial-time solution)

As a matter of fact, Restricted Labeled Single-string automata
turned out to be well suited to algorithmic manipulation:

@ polynomial-time algorithms for searching symbol occurrences
in the word recognized by an RLA,

@ polynomial-time algorithms that compute granule conversions
between different time granularities w.r.t. to meaningful
relationships (e.g., intersect, cover, covered by),

@ polynomial-time algorithms that compute the most compact
representation (or the most tractable representation) of a
given string-based specification.

	Introduction
	Time granularities
	Representation formalisms
	String-based approach

	Automaton-based approach
	Single-string Automata
	Extended Single-string Automata
	Restricted Labeled Single-string Automata

	The equivalence problem
	Problem statement
	Proposed solutions

	Solution of RLA equivalence
	Sharing automata
	Basic idea
	Reduction to linear diophantine equations

	Conclusion

