Introduction 000	Automaton-based approach	The equivalence problem	Solution of RLA equivalence	Conclusion

On the Equivalence of Automaton-based Representations of Time Granularities

Ugo Dal Lago¹, Angelo Montanari², and Gabriele Puppis²

¹ Department of Computer Science University of Bologna, Italy dallago@cs.unibo.it

² Department of Mathematics and Computer Science University of Udine, Italy {angelo.montanari, gabriele.puppis}@dimi.uniud.it

Introduction 000	Automaton-based approach	The equivalence problem	Solution of RLA equivalence	Conclusion

Motivations

• relational databases:

to express temporal information at different time granularities, to relate different granules and convert associated data (queries)

artificial intelligence:

to reason about temporal relationships, e.g, to check consistency, validity, and equivalence of temporal constraints at different time granularities (temporal CSPs)

• data mining:

to discover temporal relationships between collected events, to derive implicit information from such relationships.

Introduction 000	Automaton-based approach	The equivalence problem	Solution of RLA equivalence	Conclusion

Outline

- Introduction (time granularities and their representations)
- The automaton-based approach (Single-string automata)
- The equivalence problem
- The solution for RLA-based representations

Let $(\mathbb{N}^+, <)$ be the underlying **temporal domain**.

Definition

A time granularity G is a partition of a *subset* of $(\mathbb{N}^+, <)$ such that, for every pair of distinct sets $g, g' \in G$ (called granules), one of the following two conditions holds:

$$\ \, {\bf 9} \ \, {\bf g} < {\bf g}' \ \, ({\rm i.e., \ for \ all \ } t \in {\bf g} \ \, {\rm and \ for \ all \ } t' \in {\bf g}', \ t < t'),$$

2
$$g > g'$$
 (i.e., for all $t \in g$ and for all $t' \in g'$, $t > t'$).

Introduction	Automaton-based approach	The equivalence problem	Solution of RLA equivalence	Conclusion	
000					
Representation formalisms					

We cannot finitely represent *all granularities over an infinite domain* \Rightarrow we have to restrict ourselves to a proper subclass of structures.

Possible approaches to time granularity representation

• algebraic one:

relationships between granularities are represented by algebraic terms built up from a finite set of operators (e.g., Week = $Group_7(Day)$ in the Calendar Algebra)

C. Bettini, S. Jajodia, S.X. Wang. Time Granularities in Databases, Data Mining, and Temporal Reasoning. 2000.

logical one:

time granularities are defined by models of formulas in a suitable language (e.g., PLTL)

C. Combi, M. Franceschet, A. Peron. Representing and Reasoning about Temporal Granularities. Journal of Logic and Computation, 2004.

Introduction	Automaton-based approach	The equivalence problem	Solution of RLA equivalence	Conclusion
000				
Representation formalisms				

We cannot finitely represent all granularities over an infinite domain

 \Rightarrow we have to restrict ourselves to a proper subclass of structures.

Possible approaches to time granularity representation

string-based one:

relationships between time points and granules are encoded by sequences of symbols from a given alphabet (e.g., Granspecs)

🛸 J. Wijsen. A String-based Model for Infinite Granularities. Proceedings of the AAAI Workshop on Spatial and Temporal Granularities, 2000.

automaton-based one:

automata are used to encode string-based representations of time granularities (e.g., Single-string Automata)

🛸 U. Dal Lago, A. Montanari. Calendars, Time Granularities, and Automata. Proceedings of the 7th International Symposium on Spatial and Temporal Databases, 2001.

Introduction	Automaton-based approach 0000	The equivalence problem	Solution of RLA equivalence	Conclusion		
String-based approach						

Basic ingredients of the string-based approach

- A fixed alphabet $\{\blacksquare, \Box, \blacktriangleleft\}$, where
 - represents time points covered by some granule,
 - \Box represents gaps within and between granules,
 - represents the last time point of each granule
- Restriction to ultimately periodic words over {■, □, ◄}, namely, to finite granularities or granularities that, ultimately, periodically group instants of the temporal domain.

Introduction	Automaton-based approach	The equivalence problem	Solution of RLA equivalence	Conclu
	0000			
Single string A	itomata			

Connection between ultimately periodic words and automata:

Proposition

Any ultimately periodic word is recognized by a **Single-string Automaton** (**SSA**), namely, a Büchi automaton accepting a single infinite word.

Corollary

Finite granularities and *ultimately periodical granularities* can be represented by Single-string Automata.

Introduction	Automaton-based approach	The equivalence problem	Solution of RLA equivalence	Conclusion	
	0000				
Extended Single-string Automata					

Problem

Representations based on Granspecs and SSA are *too large* with respect to inherently simple structure of granularities.

Possible solution

Use counters and multiple transitions to compactly encode redundancies of time granularities:

- counters range over *discrete domains* (e.g., ℕ),
- update operators modify the values of the counters,
- guards rule the activation of primary transitions and secondary transitions

(note: only one transition is enabled at each step).

Introdu 000		Automaton-based approach	The equivalence problem	Solution of RLA equivalence	Conclusion
Restrict	ed Labeled	I Single-string Automata			

Extended SSA do not ease algorithmic manipulation.

Solution (Restricted Labeled Single-string Automata - RLA)

One can introduce suitable restrictions:

• states can be labeled (namely, they recognize a symbol)

Introduction 000	Automaton-based approach	The equivalence problem	Solution of RLA equivalence	Conclusion
Restricted Labeled	I Single-string Automata			

Extended SSA do not ease algorithmic manipulation.

Solution (**Restricted Labeled Single-string Automata - RLA**) One can introduce suitable restrictions:

 states can be labeled (namely, they recognize a symbol) or non-labeled (in this case, they are assigned a counter),

Introduction 000	Automaton-based approach ○○○●	The equivalence problem	Solution of RLA equivalence	Conclusion
Restricted Labele	d Single-string Automata			

Extended SSA do not ease algorithmic manipulation.

Solution (**Restricted Labeled Single-string Automata - RLA**) One can introduce suitable restrictions:

- states can be labeled (namely, they recognize a symbol) or non-labeled (in this case, they are assigned a counter),
- the graph of primary transitions is acyclic (forest graph),

Introduction 000	Automaton-based approach ○○○●	The equivalence problem	Solution of RLA equivalence	Conclusion
Restricted Labeled	Single-string Automata			

Extended SSA do not ease algorithmic manipulation.

Solution (**Restricted Labeled Single-string Automata - RLA**) One can introduce suitable restrictions:

- states can be labeled (namely, they recognize a symbol) or non-labeled (in this case, they are assigned a counter),
- the graph of primary transitions is acyclic (forest graph),
- secondary transitions depart from non-labeled states and form **back edges** in the forest graph,

Introduction 000	Automaton-based approach	The equivalence problem	Solution of RLA equivalence	Conclusion
Restricted Labeled	Single-string Automata			

Extended SSA do not ease algorithmic manipulation.

Solution (**Restricted Labeled Single-string Automata - RLA**) One can introduce suitable restrictions:

- states can be labeled (namely, they recognize a symbol) or non-labeled (in this case, they are assigned a counter),
- the graph of primary transitions is acyclic (forest graph),
- secondary transitions depart from non-labeled states and form back edges in the forest graph,
- *uniform policy* of counter update (decrement/reset).

Similarly, the two Restricted Labeled SSA are equivalent:

Introduction	Automaton-based approach	The equivalence problem	Solution of RLA equivalence	Conclusion
		000		
Proposed solutions				

As for string-based specification

The equivalence problem reduces to the pattern matching problem

 $\Rightarrow\,$ the algorthm is linear in the size of the input Granspecs.

As for automaton-based representations

Trivial (but *inefficient*) solutions exist:

simply unfold the automata into equivalent Granspecs and then use pattern matching algorithms to test equivalence

⇒ exponential complexity for both Extended Single-String Automata and Restricted Labeled Single-String Automata.

Introduction 000	Automaton-based approach	The equivalence problem ○O●	Solution of RLA equivalence	Conclusion
Proposed solutions				

As for Extended SSA

A better (but still rather inefficient) solution exists:

the equivalence problem is reduced to the satisfiability problem for *PLTL*^{*} (i.e., a temporalization of a fragment of Presburger logic)

 \Rightarrow the problem turns out to be in PSPACE (completeness proved by using a reduction from the satisfiability problem for quantified boolean formulas).

S. Demri. LTL Over Integer Periodicity Constraints. Proceedings of the 7th International Conference on Foundations of Software Science and Computation Structures, 2004.

In the following, we focus on a solution to the equivalence problem for Restricted Labeled Single-String Automata ...

Introd 000		Automaton-based approach	The equivalence problem	Solution of RLA equivalence	Conclusior
Sharin	ng automa	ta			
		*. *			
	Defir	nition			
A chain is a path of primary transitions that goes		at goes			
• either from the target to the source of a secondary transitio				ion	
		-			
	_				
	Evan	nle			

Introc 000	luction	Automaton-based approach	The equivalence problem	Solution of RLA equivalence	Conclusion
Sharir	ng automat	a			
	Defin	ition			
	A cha	ain is a path of prin	nary transitions th	at goes	
	• either from the target to the source of a secondary transition				on
	_				
	F				
	Exam	pie			
	Consi	der the following au	utomaton:		

Introd 000	luction	Automaton-based approach	The equivalence problem	Solution of RLA equivalence	Conclusion
Sharir	ng automa	ta			
	Defir	nition			
A chain is a path of primary transitions that goes					
• either from the target to the source of a secondary transition				ion	
	Exan	elar			

Sharing automata			
Definition			
A chain is a path of primary transitions that goes			
• either from the target to the source of a secondary transitio			
Example			

Introduction 000	Automaton-based approach 0000	The equivalence problem	Solution of RLA equivalence ●0000	Conclusion
Sharing automat	а			

Definition

A chain is a path of primary transitions that goes

- **(**) either from the target to the source of a secondary transition
- **2** or from the entry point "start" to the deepest state.

Example

Introduction 000	Automaton-based approach	The equivalence problem	Solution of RLA equivalence ●0000	Conclusion
Sharing automata				

Definition

A chain is a path of primary transitions that goes

- either from the target to the source of a secondary transition
- **2** or from the entry point "start" to the deepest state.

An automaton is **sharing** if it contains some *overlapping chains*.

Example

Consider the following automaton:

... it is easily seen to be sharing.

Introduction 000	Automaton-based approach	The equivalence problem	Solution of RLA equivalence ○●○○○	Conclusion
Sharing automata				

Lemma

Any Restricted Labeled SSA can be transformed into an equivalent non-sharing automaton with (at most) a polynomial blowup of states.

Proof idea

Simply duplicate overlapping portions of chains:

Introduction 000	Automaton-based approach	The equivalence problem	Solution of RLA equivalence	Conclusion
Basic idea				

Fact

Two Restricted Labeled SSA A and B are *not equivalent* iff there exist two distinct symbols a, b such that

 $\mathit{Occ}_\mathcal{A}(a)\cap \mathit{Occ}_\mathcal{B}(b) \neq \emptyset$

where $Occ_{\mathcal{A}}(a)$ denotes the (possibly infinite) set of *occurrence positions of a* in the word recognized by \mathcal{A} .

Proposition

If \mathcal{A} is *non-sharing*, then the set $Occ_{\mathcal{A}}(a)$ can be presented as a **finite union of linear progressions** of the form

 $p_1C_1+\ldots+p_nC_n$

where $p_i \in \mathbb{N}^+$ and C_i is an interval of \mathbb{N} (the presentation uses only *polynomial size* w.r.t. the size of the automaton).

Intro 000	duction	Automaton-ba 0000	sed approach	The equiva 000	lence problem	Solution of RLA equ ○○○●○	uivalence Con	
Basic	: idea							
	Exam	nple						h
	Consi	ider the no	on-sharing	g Restrict	ed Labeled	I SSA <i>A</i> :		1
		star						
	Осс	$\mathcal{A}_{\mathcal{A}}(\blacksquare) =$	1 + first position	- 1 Ioop Iength	• [0, 3] counter interval			
		U	8 + first	- <u>1</u> 1 st loop	• [0, 3] 1 st counte	+ 7	· $[0, \omega[$	r

position

 $1^{\rm st}$ loop length

1st counter interval

2nd loop length

2nd counter interval

 \Rightarrow The RLA equivalence problem is in Co-NP.

Open problem

Establish whether the non-equivalence problem for Restricted Labeled Single-string Automata is *Co-NP-complete* or not.

(Note: it is conceivable that the problem may enjoy a *deterministic polynomial-time* solution)

As a matter of fact, Restricted Labeled Single-string automata turned out to be well suited to algorithmic manipulation:

- polynomial-time algorithms for *searching symbol occurrences* in the word recognized by an RLA,
- polynomial-time algorithms that compute *granule conversions* between different time granularities w.r.t. to meaningful relationships (e.g., intersect, cover, covered by),
- polynomial-time algorithms that compute the *most compact* representation (or the *most tractable* representation) of a given string-based specification.